Command Palette

Search for a command to run...

Input Preprocessing

Benched.ai Editorial Team

Input preprocessing converts raw user data into a format that the model can ingest efficiently and safely.

  Text Pipeline

StageExample OpsTools
NormalizationUnicode NFC, lowercasingICU
TokenizationBPE, sentencepiecetiktoken, Hugging Face
Truncation / paddingEnforce max tokensndarray ops
Safety filteringStrip PII, profanityregex, presidio

  Image Pipeline (vision models)

StageOpsOutput
ResizeLong edge 512 px512×H
Center cropSquare crop512×512
NormalizeMean/stdFloat32 tensor
Augment (train)Flip, color jitterDiversity

  Design Trade-offs

  • Aggressive truncation avoids overflow errors but may drop key context.
  • Lowercasing simplifies vocab but loses proper-noun cues for NER.
  • Real-time safety filters add latency; consider async moderation.

  Current Trends (2025)

  • Tokenizers with byte-level fallback reduce OOV issues in multilingual data.
  • GPU-accelerated regex filtering (Hyperscan) reaches 20 GB/s buffers.
  • Serverless preprocessing using Cloudflare Workers for edge latency.

  Implementation Tips

  1. Keep tokenizer version pinned; drift causes embedding mismatch.
  2. Log preprocessed token count to detect unexpected prompt inflation.
  3. For images, apply the same resize & crop in evaluation to avoid accuracy mismatch.