Command Palette

Search for a command to run...

JSON Mode

Benched.ai Editorial Team

JSON mode constrains a language model to emit syntactically valid JSON that matches a predefined schema, simplifying client parsing and reducing hallucination risk.

  When to Use JSON Mode

ScenarioBenefit
Structured API responsesEasy deserialization
Function calling argumentsGuaranteed schema compliance
Embedding arraysPredictable numeric formats

  Enabling JSON Mode (examples)

ProviderParameter
OpenAIresponse_format:{"type":"json_object"}
Anthropicsystem:"You must output JSON" + parser
Google Geminisafety_settings.format="JSON"

  Design Trade-offs

  • Strict JSON forbids natural-language context; may need separate explanation field.
  • Larger token count due to quotes and braces.
  • Schema too tight can cause frequent invalid_request errors.

  Current Trends (2025)

  • Streaming JSON mode with incremental tokens allows clients to parse as they arrive.
  • JSON + Comments (JSONC) proposal adds developer hints stripped before validation.
  • Compiler-like validators provide diff suggestions when model output deviates.

  Implementation Tips

  1. Include a trailing newline after closing brace to detect completion.
  2. Reject extra keys with strict deserializers (e.g., pydantic.Strict).
  3. Log raw strings before parsing for easier debugging.