Command Palette

Search for a command to run...

Model Usage Logging

Benched.ai Editorial Team

Model usage logging captures metadata about each request and response—prompt length, latency, cost—to enable monitoring, debugging, and billing.

  Typical Log Schema

FieldTypePurpose
timestampISO 8601Temporal ordering
user_idstringTenant attribution
model_namestringVersion tracking
prompt_tokensintCost calculation
completion_tokensintCost calculation
latency_msintPerformance SLA
status_codeintError analysis

  Design Trade-offs

  • Verbose logs improve observability but raise storage cost.
  • Storing raw prompts aids debugging but may expose PII; hash or redact.
  • Real-time streaming to ELK adds ingest latency.

  Current Trends (2025)

  • Differentially private logging scrubs rare token sequences1.
  • Columnar log storage (Iceberg) reduces cost 35 % vs row stores.

  Implementation Tips

  1. Sample low-value traffic (e.g., health checks) at 1 %.
  2. Separate hot (7-day) and cold (90-day) retention tiers.
  3. Encrypt logs at rest and restrict analyst roles.

  References

  1. Apple Differential Privacy Overview, 2025.