Command Palette

Search for a command to run...

Output Post-processing

Benched.ai Editorial Team

Output post-processing transforms raw model generations into the final form delivered to users or downstream systems.

  Common Steps

StepPurposeExample Tool
Schema validationEnsure JSON matches specpydantic, jsonschema
Safety filterRemove PII, toxicityOpenAI moderation, Perspective API
FormattingTrim whitespace, capitalizeregex, black for code
Unit conversionNormalize units & currencyPint
Linking & markupAdd Markdown linkscustom scripts

  Design Trade-offs

  • Strict validators reduce errors but may over-reject valid replies.
  • Aggressive filtering can censor creative language.
  • Extra transforms add latency; batch where possible.

  Current Trends (2025)

  • Streaming post-processors handle partial JSON shards as tokens arrive.
  • Explainability tags (source_sentence) added for citation tracking.
  • Inline code formatters auto-fix Python before execution.

  Implementation Tips

  1. Keep raw model output for audit before mutations.
  2. Run post-processing in isolated sandbox to avoid code injection.
  3. Log distinct error types (schema, safety) to guide prompt fixes.